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Chapter 1
Introduction I: Personal Insights 
in the Problem: What Remains to Be Done

Giovanni Benelli

 

Despite decades of extensive research efforts, mosquitoes (Diptera: Culicidae) still 
play a crucial role among vectors of medical and veterinary importance (Benelli 
2015). Indeed, besides the widely known malaria burden, which led to 6.8 million 
deaths averted globally since 2001 (Benelli and Beier 2017), dengue virus poses at 
risk 3900 million people in 128 countries (Bhatt et al. 2013). In addition, lymphatic 
filariasis is still ranked among the most important neglected tropical diseases, and—
at the same time—Zika virus outbreaks in the Americas and the Pacific are attract-
ing high public health attention (Petersen et al. 2015; Benelli and Romano 2017), 
due to the arboviral connection with fetal microcephaly and neurological complica-
tions, with special reference to the Guillain–Barré syndrome (Oehler et al. 2014; 
Benelli and Mehlhorn 2016).
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To effectively manage mosquito populations, a rather wide number of control 
routes have been attempted, including classic applications of chemically synthe-
sized pesticides, wide employ of long-lasting insecticidal nets (LLINs) and indoor 
residual spraying (IRS), as well as the development of eco-friendly formulations of 
novel insecticides (covering also nanostructured materials)  (Benelli 2016, 2018) 
and mosquito repellents and field testing of biological control agents and biotechno-
logical tools (Benelli et al. 2016; Bourtzis et al. 2016). However, only few of these 
tools have been approved by the World Health Organization Vector Control Advisory 
Group  (WHO  - VCAG), and there is an urgent need to validate several of them 
through epidemiological evidences (Benelli and Beier 2017).

The present books present authoritative book chapters written by experts in the 
field of mosquito vectors and mosquito-borne diseases, to provide an updated over-
view of the current mosquito research scenario. Key questions formulated—and 
sometimes addressed—in the present book focus on mosquito morphology, biology, 
genetics, ecology, and control.

Some of the most relevant ones about mosquito biology and ecology are: which 
is the updated vector status of mosquitoes widespread in Europe? Which mosquito 
species are endangering public health in India and other Asian countries? Are mos-
quitoes able to transmit HIV? What do we really know about the potential carcino-
genic action of some pathogens and parasites vectored by several mosquito 
species?

Concerning mosquito control, crucial issues to deal with are: which are the main 
drawbacks arising from the use of chemical pesticides? How outbreaks of mos-
quito-borne diseases can be prevented by proper vector control operations? Do 
herbal and microbial products represent a challenging solution to develop novel 
mosquito repellents and insecticides of commercial interest? Which strategies are 
currently adopted during army field activities to protect humans from mosquito 
bites? Do long-lasting insecticide-treated textiles have a promising potential in the 
fight against mosquitoes?

Overall, all these questions urgently need a competent reply from public health 
experts, epidemiologists, parasitologists, biologists, and entomologists. As co-Edi-
tor of the present book, I am aware that this Parasitology Research Monograph 
cannot fully reflect the high diversity of the ideas and new insights rapidly growing 
in the field of mosquito vector research. Furthermore, I hope that this book will 
significantly contribute to boost research and applications on successful mosquito 
control strategies, along with an improved knowledge about the impact of vector 
biology and ecology, on the success of real-world mosquito control programs. 

Conflict of Interest The author declares no competing interests.

G. Benelli
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Chapter 2
Introduction II: Why Are Mosquitoes 
and Other Bloodsuckers Dangerous? 
Adaptations of Life Cycles and Behavior

Heinz Mehlhorn

The present book deals with recent aspects of bloodsucking arthropods such as 
mosquitoes, biting flies, fleas, midges, ticks, etc., which exist much longer on earth 
than the present generations of humans, who are targeted by these nasty contempo-
raries. Bloodsuckers are not only troublesome but also dangerous due to their ability 
to transmit agents of diseases such as prions, viruses, bacteria, fungi, and/or para-
sites, which might even lead to death (Mehlhorn 2016a, b). The transmission may 
occur during sucking lymph fluid or by oral uptake of blood, when injecting their 
mouthparts into the blood vessels (e.g., mosquitoes) or sucking at little blood 
“lakes” being produced by peculiar cutting mouthparts (e.g., tabanids, ticks) 
(Figs. 2.1 and 2.2).

All known bloodsuckers run their life cycles successfully not only in their typical 
endemic regions, where they are supported by the slightly but constantly increasing 
phenomena of global warming, but constantly enlarge their territory due to an enor-
mously increasing globalization process including the daily transportation of goods, 
persons, and animals from one end of the world to the other. The present book will 
deal with some selected examples, which give an impression, how vulnerable the 
world population is. However, it is comforting that epidemics may be successfully 
blocked as was shown by eliminating, e.g., the bluetongue epidemics of ruminants 
in the years 2006–2009 (Mehlhorn et al. 2007, 2009; Kampen and Werner 2010; 
Hoffmann et al. 2009). Another example for a blocking of the spreading of an epi-
demic was successful, when the Chikungunya virus was imported to Central Italy in 
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Fig. 2.2 Light micrograph of a female Anopheles mosquito sucking sugar solution by help of 
its two-channeled, injectable piercing mouthparts

Fig. 2.1 Scanning electron micrograph of the anterior end of an Ixodes tick, which is entered 
into the skin being cut by two saw-like cheliceres

H. Mehlhorn
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the year 2007 (Rezza et al. 2007). However, it is clear that strong efforts are always 
needed to avoid the spreading of bloodsuckers and thus block transmission of agents 
of diseases. The present book considers the recent situation and shows the endan-
gering situation. However, it does not consider the transmission activities of other 
bloodsuckers such as leeches (Nehili et  al. 1994), bats (Klimpel and Mehlhorn 
2013), or fishes (Mehlhorn 2016a, b) (Fig. 2.3).
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Chapter 3
Mosquito Transmission of HIV:  
Rare or Not Possible?

Diehl Nora

Abstract From its outbreak till today, HIV (human immunodeficiency virus) 
caused over 35 million dead. If the transmission of the virus would not be restricted 
to unprotected sexual contact, needle sharing, blood transfusion, and mother to 
child transmission, this number would probably be tremendously higher. Luckily, 
HIV has yet not been documented to be transmitted by mosquitoes. Arboviruses 
(acronym for arthropod-borne viruses)—the viruses that are transmitted by arthro-
pod vectors—are the cause of severe epidemics worldwide. But why is mosquito 
transmission restricted to certain viruses? This article elucidates the characteristics 
a virus needs to be spread by mosquitoes and how HIV fits into this picture.

Keywords HIV · Retrovirus · Arbovirus · Mosquito · Vector-based transmission  
Biological transmission · Mechanical transmission

3.1  Introduction

At the beginning of the 80s, reports of patients suffering from undefined immuno-
logical dysfunctions accumulated. The unprecedented and extremely rapid spread 
indicated a devastating epidemic. Three years later, a retrovirus—subsequently 
known as HIV—was identified as the cause of the acquired immune deficiency syn-
drome (AIDS) (Barre-Sinoussi et al. 1983; Gallo et al. 1984). Followed by the rapid 
sequencing of the viral genome (Ratner et al. 1985; Wain-Hobson et al. 1985), ongo-
ing research led to the development of a highly active anti-retroviral therapy 
(HAART)—a drug cocktail which blocks the virus at different stages of its life 
cycles. With this lifelong therapy, patients nowadays can survive this former deadly 
illness. However, rarely one-half of worldwide infected person have access to this 
therapy. More than 75 million people have been infected with the virus since its out-
break and 35 million people died of AIDS-related illness. 36.7 million people were 
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living with the virus at the end of 2015 (UNAIDS 2016). Nevertheless, in compari-
son with the most common mosquito-borne viral disease, the dengue fever, the num-
ber of HIV infections seems comparatively small: A recent study estimates that 
390 million dengue infections occur annually (Table 3.1) (Bhatt et al. 2013). The 
dengue fever is caused by the dengue virus, a flavivirus with a positive single- 
stranded RNA genome (Fig. 3.1), which is mainly vectored by mosquitoes of the 
genus Aedes (principally Aedes aegypti). Though not necessarily deadly, this disease 
can cause hemorrhagic fever, which leads to 22,000 deaths per year. During the last 
years, the numbers of infections with arthropod-borne diseases increased globally, 
which is due to increasing mobility, international trade, climatic changes, and 
approaches to formerly uninhabited areas (Liang et al. 2015). The recent outbreak of 
the Zika virus, which is likewise a member of the flaviviruses and also transmitted by 
Aedes mosquitoes, in South America, Central America, and the Caribbean, only rep-
resents one of several severe threats for human health (Benelli and Mehlhorn 2016).

Table 3.1 Characteristics of the HI and dengue virus

HI virus Dengue virus

Family Retroviridae Flaviviridae

Genome +ssRNA, size: 9 kb +ssRNA, size: 11 kb
Baltimore 
classification

Group 6 Group 4

Envelope + +
Mosquito 
transmission

− +

Human to human 
transmission

+ −

Receptors CD4, co-receptors: CXCR4 or 
CCR5

Many candidate molecules, e.g., 
glycosaminoglycans, lectins

Symptoms Flu-like illness, followed by an 
asymptomatic phase

Flu-like illness, rarely: hemorrhagic 
fever

Prognosis Lifelong therapy, without 
therapy: deadly

Recovery within 14 days, very rarely 
deadly

New infections in 
2016

1.8 million 390 million

envelope

membrane

matrix

capsid

RNA genome

Fig. 3.1 Structure of the HI (left) and dengue virus (right)

D. Nora
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The lower numbers of people infected with HIV compared to those of, e.g., den-
gue (Table 3.1) might in part be explained by its different mode of transmission. The 
main transmission route of the HI virus is via unprotected sexual contact, but also 
blood, breast milk, and drug needles are origins of infections. However, HIV- 
containing fluids must directly contact a mucous membrane, damaged tissue, or the 
bloodstream. Infection via an arthropod vector has not been documented yet. But 
why are some viruses transmitted by arthropod vectors and other, like HIV, obvi-
ously not? This article recapitulates the requirements of a virus to be transmitted by 
mosquitoes and which of these criteria are accomplished by HIV or not.

3.2  Virus Transmission

Viruses are transmitted by many different routes, while direct transmission between 
two hosts is the most common way. Thereby, viruses can be embedded within aero-
sols, body fluids, fecal, or salvia. Depending on the type, they can enter a host 
orally, intranasally, venereally, or through injured tissue, skin, and mucosa. Another 
form of virus transmission is mediated by arthropods. This vector-based transmis-
sion can either occur mechanically or biologically. In case of mechanical transmis-
sion, a vector carries the pathogen on its contaminated mouthparts from one host to 
another without being infected itself. In case of biological transmission, however, 
the virus enters the vector to replicate within this host. Biological transmission 
occurs by far more often than mechanical transmission (Kuno and Chang 2005). As 
this article focuses on a possible transmission of HIV by mosquitoes, the following 
passages concentrate on the mechanisms of vector-based and HIV transmission, 
respectively.

3.2.1  Vector-Based Transmission

As a non-taxonomic clade, arboviruses represent an exceptional group of viruses. 
Belonging to different taxonomic clusters, the members only share the arthropod- 
borne mode of transmission. It is commonly accepted that arboviruses primarily 
originate from arthropod-specific viruses and that this host switch has arisen several 
independent times during evolution (Halbach et  al. 2017). The vast majority of 
arboviruses are RNA viruses with double-stranded or single-stranded RNA genomes 
of either positive or negative polarity (Gubler 2001). Members of the taxa alphavi-
rus, flavivirus, bunyavirus, phlebovirus, orbivirus, vesiculovirus, and thogotovirus 
belong to the group of arboviruses (Weaver and Reisen 2010). In fact, only one 
arbovirus harboring a DNA genome is known till today: the African swine fever 
virus. This is probably due to the lower mutation frequency of DNA compared to 
RNA viruses. DNA viruses simply do not explore the genetic diversity and thus not 
the possibility to adapt to a new host. Actually, increasing the replication fidelity 

3 Mosquito Transmission of HIV: Rare or Not Possible?
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and thus minimizing the genetic variability of RNA arboviruses reduces their infec-
tivity in mosquitoes and mice, indicating the absolute need of a certain genetic flex-
ibility (Pfeiffer and Kirkegaard 2005; Coffey et al. 2011).

Importantly, many arboviruses are zoonotic (transmittable from animals to 
humans), representing a severe danger for public health (Kuno and Chang 2005; 
Weaver and Reisen 2010). About 300 types of mosquitoes are able to transmit 
arboviruses, which only represents less than 10% of all mosquitoes living world-
wide. Representatives of the species Aedes and Culex transmit the highest number 
of different viruses. Thus, only a minority of mosquitoes can even serve as a viral 
vector. Besides the horizontal transmission between two hosts (from vertebrate to 
vertebrate), arboviruses can also be transmitted vertically to the arthropods’ 
offspring.

The spatial distribution of arboviruses is absolutely connected to the habitat of 
the arthropod vector, while the temporal distribution depends on the seasons—e.g., 
arthropods are most active during warm periods. The spread in human populations, 
on the other hand, depends on several other factors: urbanization, growth of the 
population, using new ecosystems, increased traveling, climatic changes, and resis-
tance against biocides.

As viruses do not possess genes encoding proteins necessary to execute their 
own life cycle, they are classified as obligatory intracellular parasites that depend on 
a host cell to replicate. This genome limitation forces them to adapt perfectly to the 
host cell conditions (Diehl and Schaal 2013). Replicating in two completely differ-
ent hosts—like vertebrates and arthropods—however, puts even more adaptive 
pressure on a virus (Turner et  al. 2010; Forrester et  al. 2014). But what are the 
requirements for a virus to be transmitted by arthropods?

In case of biological transmission, the lifecycle of arboviruses within the mos-
quito begins with the blood meal, whereby they are taken up and initiate the infec-
tion in the midgut. They then disseminate to secondary tissue, where further 
amplification takes place. This is followed by infection of salivary glands and the 
release of viruses into salivary ducts. When the infected mosquito then sucks blood 
from a new vertebrate host, a fresh virus generation gets transmitted within the 
saliva (Hardy et al. 1983). Within the mosquito, the escape from the midgut seems 
to be a critical bottleneck for many viruses. To leave, they need to infect the epithe-
lial cells (Franz et al. 2015), of which only a few cells seem to be permissive (about 
20–30% of cells get infected) even with a high virus dose (Smith et al. 2008). Thus, 
very high viral titers are required for efficient arbovirus infection.

Besides these tissue barriers in mosquitoes to overcome, arboviruses are faced 
with the two different immune responses of their arthropod and vertebrate host, 
respectively. Though arthropods do not possess the powerful immune system and 
the humoral antiviral response of vertebrates, they also react to an infection and are 
capable to produce antiviral factors (Fragkoudis et  al. 2009; Cheng et  al. 2016). 
However, our knowledge of the insect antiviral response is very poor compared to 
our knowledge of the vertebrate system. But due to whole genome sequencing, 
many advances have been made during the last years (Nene et al. 2007; Arensburger 
et al. 2010).
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An essential and best studied antiviral mechanism in arthropods is the RNA 
interference (RNAi) pathway (Wang et  al. 2006; Sanchez-Vargas et  al. 2009), 
though signaling of evolutionary conserved innate immune response pathways like 
Toll, Imd, and Jak-Stat also exists (Xi et al. 2008; Fragkoudis et al. 2009; Merkling 
and van Rij 2013). The RNAi pathway senses and cleaves viral RNA to inhibit the 
virus spread. Most of the studies elucidating the mechanism of RNAi in insects have 
been performed in the fruit fly Drosophila (Wang et  al. 2006). Even though the 
existence of orthologues of core components of the pathway in genomes of mosqui-
toes indicate conserved structure (Christophides et  al. 2002; Waterhouse et  al. 
2007), we have to keep in mind that Drosophila doesn’t serve as a viral vector and 
consequently differences in the molecular biology cannot be excluded.

In principal, the RNAi pathway processes as follows: The infiltrated viral RNA 
is cleaved into 21-nucleotide-long RNAs by the cellular endonuclease Dicer-2, and 
the RNA molecules then associate with proteins into an RNA-induced silencing 
complex (RISC) to guide cleavage of further viral target sequences and thus mini-
mize virus spread (Galiana-Arnoux et al. 2006; van Rij et al. 2006). RNAi is an 
important antiviral mechanism in arthropods—when RNAi genes are silenced, 
higher infection rates and severe course of disease are observed (Campbell et al. 
2008; Samuel et al. 2016). Beside this well -studied RNAi pathway, recent analyses 
suggest that the PIWI-interacting RNA (piRNA) pathway also plays a critical role 
in antiviral strategies as piRNAs are newly synthesized in vector mosquitoes as a 
response to viral sequences (Miesen et al. 2015, 2016). However, as the pathway 
was primary only thought to function in genome integrity of germ cells, this illus-
trates our lack of knowledge about the immune system of arthropods. Though some 
viral strategies to escape the mosquitoes’ immune responses exist (Fragkoudis et al. 
2009; Bronkhorst and van Rij 2014), there seems to be a well-balanced trade-off 
between the immune response and the viral spread (Kang et al. 2008). This is illus-
trated by the fact that arboviruses do not cause clinical symptoms or influence the 
behavior or the life span of mosquitoes (Liang et al. 2015; Xiao et al. 2015). Thereby, 
it is guaranteed that the host remains infectious through its entire life. Suppressing 
the immune response in Aedes aegypti cell cultures or in living mosquitoes results 
in higher infection rates of the alphavirus Sindbis virus (SINV) and increased mor-
tality (Cirimotich et al. 2009), which would be detrimental to the virus.

On the other hand, vertebrate host can suffer severe diseases, clear the arbovirus 
infection or die from it. Within the human host, the virus is faced with two defense 
mechanisms: the innate and the more specialized adaptive immune response. The 
dengue virus, for instance, is injected from the mosquitoes’ salvia into the blood-
stream of the vertebrate host. The virus then infects nearby keratinocytes (the most 
common type of skin cells) and dendritic cells, which then migrate to the lymph 
nodes (Diamond 2003), where the virus is counteracted by the IFN-dependent 
innate immune response and later also by neutralizing antibodies. This leads in most 
cases to the recovery of the patient. The virus, however, has evolved strategies to 
counteract the immune response in and prolong the infection of its vertebrate host 
(Morrison et al. 2012). Probably, this is because the virus needs to remain at least as 
long in the host till it generates titers in the blood high enough to infect new hosts.
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The other mode of vector-based transmission is mechanically via contaminated 
mouthparts of the mosquito. In this scenario, no viral replication in the arthropod 
takes place. This mode of transmission is quite rare and actually prevalently a vet-
erinary problem (Carn 1996; Chihota et al. 2001; Kuno and Chang 2005). However, 
at least in laboratory experiments, mechanical transmission has been observed. One 
prerequisite for mechanical transmission is a high virus titer in the blood, because 
only small amounts of blood can contaminate the mosquito mouthparts (less than 
20  nL) (Hoch et  al. 1985). Additionally, the virus must resist the environmental 
conditions outside the host body like temperature or acidity.

3.3  HIV Transmission

HIV-1 is an enveloped virus with two copies of a positive-sensed single-stranded 
RNA genome. It belongs to the family of retroviruses (subfamily, Orthoretrovirinae; 
genus, Lentivirus), which replicate by using a DNA intermediate (Fig. 3.1). HIV 
infects cells of the immune system expressing the CD4 receptor on their cell sur-
face. This includes T-cells, macrophages, and dendritic cells (Clapham and 
McKnight 2001). The attachment to the CD4 receptor leads to conformational 
changes and exposing of the obligate co-receptor. If the co-receptor is the chemo-
kine receptor CXCR4 or CCR5 is determined by the envelope of the particular HIV 
strain (Berger et al. 1999). The virus then fuses completely to the host cell mem-
brane to unload the viral genome, which is then translated into double-stranded 
DNA by the viral transcriptase, which had been incorporated in the viral capsid. The 
DNA is then imported into the nucleus where it gets integrated in to the host cell 
genome. This stable integration in to the host genome is the reason, why the infec-
tion with HIV persist a lifelong. To produce 18 protein isoforms form only a 9 kb 
genome, the virus highly relies on pre-mRNA splicing, a process during which 
intronic sequences are removed and exonic sequences are ligated to build the mature 
mRNA.  Through alternative splicing, which enables differential usage of splice 
sites, various transcript isoforms originating from one genetic template and thus 
potentially different proteins are generated (Nilsen and Graveley 2010), enriching 
the proteomic diversity. To produce the different proteins, HIV completely relies on 
the cellular spicing machinery (Purcell and Martin 1993). After the translations of 
these mRNAs into proteins, they get along with two copies of the viral genome 
enclosed into nascent capsids. Finally the mature virions are released and able to 
infect further cells.

After initial infection, patients may not suffer from severe symptoms expect flu- 
like illness. This phase is followed by an asymptomatic stage with an average length 
of 8 years. Meanwhile, the patients stay infectious. Over time, more and more CD4+ 
immune cells get irritated by the virus and the constitution of patients’ declines. The 
weakened immune system makes them susceptible for opportunistic infections, 
which eventually cause their death.
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In principal, the transmission of HIV-1 by mosquitoes could take place via the 
two already descripted ways: biologically or mechanically. These possibilities are 
discussed below.

3.3.1  Biological Transmission of HIV by Mosquitoes: 
Possible?

For biological transmission by mosquitoes, the respective virus has to successfully 
replicate within the arthropod host. Having a closer look at the first step during HIV 
replication, the possibility of a transmission by mosquitoes already becomes highly 
questionable. As already mentioned, to enter a host cell, the CD4 and either the 
CXCR4 or CCR5 receptors have to be expressed on the cell surface, which is only 
true for certain cells of the immune system in higher eukaryotes. Mosquitoes lack 
cells harboring any of these receptors. As a consequence, absorbed HI viruses can-
not enter any cells within the arthropod and thus disappear about 1–2 days after the 
uptake, which is exactly the amount of time mosquitoes need to digest their blood 
meal (Bockarie and Paru 1996). In comparison with HIV, arboviruses have a rela-
tively broad cell tropism. Dengue virus, for example, seems able to use many differ-
ent molecules for the cell entry such as sulfated glycosaminoglycans, lectins, 
laminin-binding proteins, and glycosphingolipids, both in the vertebrate and arthro-
pod host (Table 3.1) (Hidari and Suzuki 2011).

Imagining that the virus somehow overcomes this hurdle and enters epithelia 
cells within the arthropods gut, another bunch of barriers is waiting. Several studies 
showed that hundreds host cell proteins, referred to as dependency factors, are nec-
essary for an efficient HIV replication (Brass et al. 2008; Konig et al. 2008; Zhou 
et al. 2008; Murali et al. 2011). These proteins are involved in RNA metabolism, 
protein translation, intracellular transport, or DNA replication. To gain control over 
the regulation of these cellular processes, virally encoded proteins tackle a spectrum 
of host cell signaling pathways, which control these activities (Diehl and Schaal 
2013). Many of these human proteins involved in HIV replication only have an 
orthologous gene product with rare similarities in mosquitoes. Considering the 
genetic differences between humans and Aedes species, for instance (Aedes, 12,000 
genes; humans, 23,000 genes), it becomes obvious that these organisms differ a lot 
in their molecular biology.

Having a closer look at one essential cellular mechanism for the virus, splicing is 
only one example of the fine-tuned adaption of the virus to its mammalian host: as 
already mentioned HIV encodes for 18 protein isoforms, which are all generated 
from its relatively small 9 kb genome (Jager et al. 2011). To produce several different 
transcripts ordered and balanced from a single primary transcript, the virus uses 
extensive alternative splicing (Karn and Stoltzfus 2012). Thereby, not only the 
 specific amount of each mRNA but also its timely expression is critical to the success 
of the viral life cycle (Klotman et al. 1991; Purcell and Martin 1993). To perform and 
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coordinate alternative splicing, HIV uses the cellular splicing machinery. This does 
not only include the host spliceosome, the multi-protein complex that performs the 
splicing reaction, but also a network of different splicing regulatory proteins. Already 
minor changes in the amount or the activation status of these proteins are detrimental 
for the viral replication. Hence, this precisely adjusted system is quite sensitive and 
unresisting to modifications and perfectly adapted to the human host.

Aside from these molecular requirements of HIV, there are other factors within a 
mosquito making the life cycle or even the survivor of the virus nearly impossible. 
As an enveloped virus with a quite instable envelope composed of viral glycopro-
teins and lipid bilayers taken from the host cell membrane, HIV isn’t able to exist 
for a long time outside a cell (Tjotta et al. 1991; Abdala et al. 1999, 2000). The virus 
is very sensitive to changes in pH values: below a pH of 5.7, the virus gets destroyed 
within hours, and also values above 8 are deadly for the virus (Ongradi et al. 1990; 
Tjotta et al. 1991). Within the mosquito gut pH values between 8.5 and 9.5. were 
measured (del Pilar Corena et al. 2005), representing a destructive viral environ-
ment. Taking together, HIV is not able to enter mosquitoes’ cells because of the lack 
of the respective receptor. Despite that, factors that would be necessary for the viral 
replication within in the host cell are partially missing in insects. As a consequence, 
HIV is destroyed in the mosquitoes gut, and thus the biological transmission can 
technically be excluded.

3.3.2  Mechanical Transmission of HIV by Mosquitoes: 
Possible?

Having now agreed that biological transmission of HIV by mosquitoes is virtually 
impossible, what is about mechanical transmission?

Besides the sexual and mother to child transmission, needle sharing among drug 
users is an increasingly important cause of HIV transmission worldwide. Thereby, 
contaminated blood in needles, syringes, and paraphernalia are the main sources. 
During every injection, blood from the user gets inserted into the needle and syringe. 
If this user is HIV positive and another uninfected drug users utilizes the same para-
phernalia without cleaning, the potential virus contaminated blood directly gets 
injected into the bloodstream, where the virus immediately can infect its target cells 
without having the hurdle of tissue barriers. Nowadays, people who inject drugs 
account for 30% of new HIV infections outside the sub-Saharan Africa. Yet, a single 
incident of shared needle or syringe will not necessarily lead to an HIV infection. 
The estimation of the infection risk from one injection ranges from 0.6 to 2.4% 
(Baggaley et  al. 2006). The high numbers of newly infected persons who inject 
drugs can probably be explained with the frequency of contaminated needle usage.

The question is: is there a difference between a needle and a mosquito?
The process of blood sucking by mosquitoes and the injection of drugs with 

needles highly differ in the mechanism: during blood sucking, mosquitoes send 
salvia via one tube into the host and suck the host’s blood via another tube. The 
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salvia is composed of substances that prevent blood clotting and platelet aggrega-
tion along with vasodilatory substances (Ribeiro and Francischetti 2003). In addi-
tion, the salvia contains ant-inflammatory and immunosuppressing proteins, which 
seem to facilitate viral infections (Edwards et  al. 1998; Schneider et  al. 2010; 
Surasombatpattana et al. 2012). Consequently, no blood of the previous host gets 
injected into the new host. Hence, infection could only appear from blood that glues 
on the mosquitoes mouthparts. However, this could only be possible for very little 
amount of blood and thus viral particles. Calculations estimated that more than ten 
million bites of a mosquito with HIV contaminated mouthparts would be necessary 
for a HIV-free person to receive a single unit of the virus (Bockarie and Paru 1996).

In sum, mechanical transmission of viruses by arthropod vectors depends on the 
amount of blood (and the respective virus load) and the way an HIV-free person gets 
“injected.” While shared needles contain considerably higher amounts of blood that 
directly get injected into the blood stream, potential amounts of HIV-containing 
blood on mosquito mouthparts can be neglected. Moreover, no blood gets injected 
into the host during blood sucking.

3.4  Summary

Taken together, we can answer the question asked within the title with a clear “not 
possible.” For biological transmission the virus would need to replicate within the 
arthropods host, which we have seen can be excluded for the highly specialized HI 
virus. For mechanical transmission, however, the amount of blood with which the 
mosquito mouthpart could be contaminated with is by far too low for an infection. 
In addition, HIV is a quite sensitive virus and thus gets destroyed quite soon outside 
a host cell. The fact that arthropod-specific viruses are ancestral to arbovirus and 
that no host change in the other direction has been reported yet makes a mosquito 
transmission of HIV even more unlikely. Yet, a scenario, in which an arthropod- 
specific virus, we only don’t know, undertakes a host-switch in the future and causes 
symptoms comparable to HIV, may not be excluded.
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